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Abstract-An analysis is made of the conditions under which the equation of state of a cubic solid 
under hydrostatic pressure takes the form given by either the Mie-Griineisen or the Hildebrand 
approximation. The condition of validity of the vibrational or thermal formulation of the Mie
Griineisen approximation is reduced to the existence of a purely volume-dependent characteristic 
temperature for the vibrational or thermal free energy of the solid. The analysis consists then in a 
search for temperature ranges where these restrictions on the functional form of the free energy, and 
the restrictions on the form of the internal energy imposed by the Hildebrand approximation, are 
satisfied for a non-metal in the quasi-harmonic approximation. The main results are as follows: 
(1) At temperatures somewhat above the Debye characteristic temperature for the (quasi-harmonic) 
high-temperature heat capacity at constant volume, it is appropriate to take as equation of state the 
vibrational Hildebrand equation: (2) at somewhat lower temperatures, this Hildebrand equation is 
generally more inaccurate than the corresponding Mie-Griineisen equation; and (3) in the low
temperature T3 region of the heat capacity, the equation of state reduces to the thermal Mie
Griineisen equation. The explicit forms of the vibrational and thermal Mie- Griineisen equations of 
state, and of their volume derivatives at constant temperature, are reported together with the corre
sponding Hildebrand equations. Some corollary results are obtained, within the quasi-harmonic 
approximation, on the temperature variation at constant volume of the Griineisen parameters re
lating the explicit volume and temperature dependence of the vibrational and thermal free energy and 
of the entropy of a cubic solid, and (in an Appendix) on the temperature variation of the Debye 
temperatures appropriate to the various thermodynamic functions of any non-metal. The available 
experimental and theoretical evidence on the anharmonic contributions to the thermodynamic 
functions of solids is briefly discussed, and points to the conclusion that their weight is quite small in 
the region of temperature of interest for our analysis. 

1. INTRODUCTION 

THE FORMULATION of the equation of a state of a 
cubic solid under hydrostatic pressure which is 
commonly adopted to determine the volume de
pendence of the lattice energy of the solid from 
empirical data is based either on the Hildebrand 
approximation (2) or on the Mie-Griineisen approxi
mation. (3) In recent years, it has been tacitly 
assumed that the Mie-Gruneisen equation of state, 
which takes approximate account of the explicit 
volume dependence of the (vibrational or thermal) 
free energy of the solid, is a better formulation to 

* Based on work performed under the auspices of the 
U.S. Atomic Energy Commission. A brief report of 
this work has been given in Ref. (1). 
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use than the Hildebrand equation of state, which 
neglects the explicit volume dependence of the 
(vibrational or thermal) internal energy of the solid. 
In effect, HUANG(4) took the Mie-Griineisen 
equation of state as equation of reference in analyz
ing the validity of the Hildebrand equation. The 
same attitude is implicit also in some calculations 
of BORN and HUANG(5), who have adopted the 
vibrational Mie-Griineisen equation of state, and 
an approximation to its volume derivative at con
stant temperature, to recalculate the parameters 
entering the Born expression for the lattice energy 
of the alkali halides from empirical data at room 
temperature and atmospheric pressure. More re
cently RICE et al. (6) have derived the P-V isotherm 
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at OOK for a number of metals from their shock
wave compression data by adopting. the thermal 
Mie-Griineisen equation of state, in an approxi
mation proposed by DUGDALE and MACDoNALD, 
as the equation of state appropriate above room 
temperature. BENEDEK(7) has used, instead, the 
vibrational Mie-Griineisen equation of state, with 
the Griineisen parameter y taken as a constant, to 
deduce from those data the volume dependence 
of the lattice energy of some metals, neglecting 
the electronic contribution to the vibrational free 
energy at room temperature and zero pressure. 

Here we will investigate systematically the con
ditions under which the equation of state of a 
cubic solid, subject only to hydrostatic pressure, 
reduces to the form given by either the Mie-Griinei
sen or the Hildebrand approximation. General 
thermodynamic arguments, which extend previous 
work of BORN(S), GRUNEISEN(3) and DAVIES(9), lead 
one quite easily to express the condition of validity 
of the vibrational or thermal formulation of the 
Mie-Griineisen approximation as a restriction on 
the form of the vibrational or thermal free energy 
of the solid as a function of its volume and tem
perature. One can then show that the experimental 
observation, for a given solid, of a Griineisen para
meter y which does not depend on temperature at 
constant volume in a certain range of temperature 
and volume does not ensure, in general, the 
validity in this range of either form of the Mie
Griineisen equation of state. Thermodynamics 
does not allow one, instead, to establish whether 
the special functional form of the vibrational (or 
thermal) free energy, which expresses the Mie
Griineisen approximation, is more or less re
strictive than the special functional form of the 
vibrational (or thermal) energy, which expresses 
the Hildebrand approximation. Some general 
results on the validity of these various functional 
restrictions can be obtained within the quasi
harmonic approximation to the statistical mechanics 
of a non-metal, both at the low temperatures where 
only long-wave acoustic modes are thermally 
excited, and in the temperature range of converg
ence of the THIRRING--STERN(lO) expansions for the 
thermodynamic functions, completing previous 
work of BORN (11) and BARRON(12,13). Within this 
approximation, the vibrational Mie-Griineisen 
equation of state and the corresponding Hilde
brand equation are both strictly valid only at 

temperatures where the heat capacity at constant 
volume has attained its classical value, but at some
what lower temperatures the former can be ex

. pected to be less inaccurate than the latter. 
Furthermore, within the temperature range of 
convergence of the Thirring-Stern expansions, 
the independence of y from temperature at con
stant volume does ensure the validity of the 
vibrational Mie-Gri.ineisen equation of state. The 
thermal Mie-Gri.ineisen equation, instead, is the 
appropriate equation of state for a non-metal in 
the T3 region of the heat capacity. At moderate and 
high temperatures, the thermal Mie-Griineisen 
and Hildebrand equations are less accurate than 
the correponding vibrational equations, and they 
become valid only if the zero-point energy of the 
solid becomes negligible compared to its thermal 
energy, so that the two formulations of each 
approximation coincide. 

2. THERMODYNAMIC DISCUSSION OF THE 
MIE- GR'ONEISEN AND HILDEBRAND APPROXI

MATIONS 

The equation of state of a cubic solid subject 
only to hydrostatic pressure, P = - (oFj OV)T, can 
be written alternatively in the so-called vibrational 
and thermal formulations (see, e.g., BENEDEK(7) and 
BARRON (12). These correspond, respectively, to 
splitting the Helmholtz free energy of the solid 
P( V, T) into the energy of the static solid of volume 
V in its electronic ground state [the lattice energy 
W L(V)] plus a "vibrational" free energy Fvib(V,T), 
or into the non-thermal energy [the cohesive 
energy Wc(V) of the solid of volume Vat OOK] 
plus a "thermal" free energy Fth( V, T). The 
free energies Fvib(V,T), Fth(V,T) involve, of 
course, the vibrational and thermal energies of the 
solid Wvib(V,T) and Wth(V,T), and the total 
entropy S(V,T). We write the equation of state in 
these two completely equivalent formulations in a 
form which, though seemingly unduly elaborate, is 
particularly well suited for the subsequent ther
modynamic discussion: 
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